Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst

Shiming Chen, Siglinda Perathoner, Claudio Ampelli, Chalachew Mebrahtu, Dangsheng Su, and Gabriele Centi

Depts. MIFT and ChimBioFarAM (Industrial Chemistry) University of Messina, ERIC aisbl and INSTM/CASPE (Italy)

> Dalian Institute of Chemical Physics Chinese Academy of Sciences (China)

Angew. Chem. Int. Ed. 2017, DOI: 10.1002/anie.201609533.

Joseph Salamoun Current Literature 02/11/17 Wipf Group

Production of Ammonia

- Annual production > 150 million tons. Nearly 80% of ammonia used in fertilizers.
- Resulted in 3 Nobel Prizes in Chemistry (Haber 1918, Bosch 1931, Ertl 2007)
- Most common production process is the Haber-Bosch process.

$$N_2(g) + 3H_2(g)$$
 2 $NH_3(g)$

• Contributes to nearly 1.4% of global energy consumption and 3% of global ${\rm CO}_2$ emissions.

Advancements in Ammonia Synthesis

Average annual American household energy consumption in 2015 is ca. 39 GJ.

https://www.fea.org/publications/freepublications/publication/Chemical_Roadmap_2013_Final_WEB.pdf

natural gas air O₂, N₂ steam (methane) H₂O CH₄ sulfur primary reforming removal H₂, CO, CO₂ H2, CO, CO2, N2 secondary reforming heat recovery shift reaction CO removal carbon carbon dioxide dioxide by-product removal methanation final removal of carbon oxides H₂, N₂ compression Haber process ammonia synthesis NH₃, H₂, N₂ separation H₂, N₂ refrigeration NH₃ ammonia Joe Salamoun @ Wipf Group

Industrial Synthesis of Ammonia

http://wwwagessetatialchemicalindustry.org/chemicals/ammodalou.html

Methane (Natural Gas) is the Source of Hydrogen Gas

• Sulfides in methane must be removed.

mixed oxides of Co and Mo
supported on alumina

R-H (g) + H₂S (g)

$$ca. 700 ext{ K}$$
 $R-H (g) + H2S (g)$
 $ca. 700 ext{ K}$
 $Ca. 700 ext{ K}$
 $Ca. 700 ext{ K}$
 $Ca. 700 ext{ K}$

Primary steam reforming: Ni catalyst supported on
$$CaO/Al_2O_3$$
 CH_4 (g) + H_2O (g) ca. 1000 K, 30 atm tubular reactor

Secondary steam reforming:
$$2 H_2(g) + O_2(g) \longrightarrow 2 H_2O(g)$$

$$CH_4 (g) + H_2O (g)$$
 Ni catalyst $CO (g) + 3 H_2 (g)$ ca. 1200 K

- Shift Rxn converts CO to CO₂.
- Methanation reduces trace CO and CO₂ to CH₄.
- Result: 74% H₂, 25% N₂, 1% methane, trace Ar.

Ammonia Production

Pressure (atm)	% ammonia present at equilibrium				
	373 K	473 K	573 K	673 K	773 K
10	-	50.7	14.7	3.9	1.2
25	91.7	63.6	27.4	8.7	2.9
50	94.5	74.0	39.5	15.3	5.6
100	96.7	81.7	52.5	25.2	10.6
200	98.4	89.0	66.7	38.8	18.3
400	99.4	94.6	79.7	55.4	31.9
1000	-	98.3	92.6	79.8	57.5

Components of Electrochemical Cell

- A **galvanostat** (also known as amperostat) controls the current (measured in Amps). Current is the rate at which charge is flowing.
- A **potentiostat** controls the voltage difference between a Working Electrode and a Reference Electrode. Both electrodes are contained in an electrochemical cell.

Research into Electroproduction of Ammonia

- Ammonia was synthesized from $H_2(g)$ and $N_2(g)$ using a solid state proton (H⁺)-conducting cell-reactor with Pd electrodes at 570 °C and atmospheric pressure. >78% of electrochemically supplied hydrogen was converted into ammonia.
 - Science **1998**, 282, 98.
- Electrolysis of air and steam in a molten hydroxide (0.5 NaOH/0.5 KOH) suspension on nano-Fe₂O₃ at 200 °C produced ammonia at coulombic efficiency of 35%.
 - Science 2014, 345, 637.
- Electrolysis of H_2O and N_2 at Ru cathodes, using a solid polymer electrolyte cell. At atmospheric pressure and 90 °C with a current efficiency of 0.2%, ammonia was produced at a rate of 1.2 μ g h⁻¹ cm⁻².
 - Chem. Commun. **2000**, 1673.

Bioelectrochemical Synthesis of Ammonia

Page 9 of Angew. Chem. Int. Ed. 2017, DOI: 10.1002/anie.204/602500

The Assembly

- Anode chamber contains a dilute solution of KHCO₃.
- The membrane-electrode assembly is the cathode/WE. Made with Nafion membrane (sulfonated tetrafluoroethylene), gas diffusion layer, and ${\rm Fe_2O_3}$ support on conductive carbon nanotube.

Reaction Parameters

- OCV (open circuit potential) = without application of potential.
 - Introduced N₂ and H₂ (2:1)
 - Used to monitor base reaction(s)
 - Shows partial reduction of Fe₂O₃
- Potential is related to free energy change of a reaction. $E^{\circ} = -G_{R}^{\circ}/nF$

Reaction Efficiency

Faraday efficiency describes the efficiency with which electrons are transferred in a system facilitating an electrochemical reaction.

Low efficiency may indicate poor conversion or side reactions.

$$FE_{NH_3}(\%) = \frac{3 \times R_{NH_3}(mol \cdot cm^{-2} \cdot s^{-1}) \times t(s) \times S(cm^{-2}) \times F}{I(A) \times t(s)} \times 100\%$$

$$FE_{H_2}(\%) = \frac{2 \times P_{H_2}(\%) \times F_{N_2}(mL/min) \times t(s) \div 60(s/min) \times F}{I(A) \times t(s) \times V_m(L/mol) \times 10^3 (mL/L)} \times 100\%$$

Catalyst Surface Makes a Difference

Conclusions

- An important proof-of-concept of ammonia formation at room temperature and atmospheric pressure.
- Uses abundant reactants (water and nitrogen gas) and catalyst (iron and carbon nanotubes).
- Electricity introduces the possibility of renewable and green energy sources.
- Reaction rate, scale, and efficiency remain a challenge.