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Production of Ammonia

Annual production > 150 million tons. Nearly 80% of ammonia used in
fertilizers.

Resulted in 3 Nobel Prizes in Chemistry (Haber 1918, Bosch 1931, Ertl
2007)

Most common production process is the Haber-Bosch process.

Nz (9) + 3Hz (9) <—= 2NH;3(9)

Contributes to nearly 1.4% of global energy consumption and 3% of
global CO, emissions.
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Advancements in Ammonia Synthesis

Figure 5: Ammonia synthesis breakthrough and energy efficiency
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Source: reproduced from P. Broadhurst, Catalysts to Drive Environmental Improvements in Fertilizer Manufacture, Johnson
Mathey Catalysts: www.faidelhi.org/FAI%20Seminar%202008/Presentations/Session%20l11l/Presentation%205.pdf.

KEY POINT: Dramatic improvements in energy use for ammonia occurred prior to 1930, over the last

five decades improvements have been more incremental.

Average annual American household energy consumption in 2015 is ca. 39 Gd.
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Ammonia Production

The Haber Process:
Fe catalyst

N> (g9) +3H2 (9) =< > 2 NHj; (g)
fixed bed reactor AH = - 92 kJ/mol

% ammonia present at equilibrium

Pressure

(atm) 373K 473 K 573 K 673 K 773 K
10 - 50.7 14.7 3.9 1.2
25 91.7 63.6 27.4 8.7 2.9
50 94.5 74.0 39.5 15.3 5.6
100 96.7 81.7 52.5 25.2 10.6
200 98.4 89.0 66.7 38.8 18.3
400 99.4 94.6 79.7 55.4 31.9
1000 - 98.3 92.6 79.8 57.5
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Components of Electrochemical Cell
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+ A galvanostat (also known as amperostat) controls the current (measured in Amps).
Current is the rate at which charge is flowing.

» A potentiostat controls the voltage difference between a Working Electrode and a
Reference Electrode. Both electrodes are contained in an electrochemical cell.
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Research into Electroproduction of Ammonia

NH,

 Ammonia was synthesized from H, (g) and N, (g)

using a solid state proton (H*)-conducting cell- .

N; N,
]
| I

"""

r==

reactor with Pd electrodes at 570 °C and
atmospheric pressure. >78% of electrochemically

supplied hydrogen was converted into ammonia.
* Science 1998, 282, 98.

Electrolysis of air and steam in a molten hydroxide
(0.5 NaOH/0.5 KOH) suspension on nano-Fe,O, at
200 °C produced ammonia at coulombic efficiency of
35%.

 Science 2014, 345, 637.

Electrolysis of H,O and N, at Ru cathodes, using a
solid polymer electrolyte cell. At atmospheric
pressure and 90 °C with a current efficiency of 0.2%,
ammonia was produced at a rate of 1.2 ug h'! cm2,

o Chem. Commun. 2000, 1673.
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Bioelectrochemical Synthesis of Ammonia

Nitrogenase (MoFe)

Fe protein

NiFe Nitrogenase
Hydrogenase (MoFe)

Mvz*

Cathode

Methyl Viologen (MV)
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The Assembly
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* Anode chamber contains a dilute solution of KHCO,.
 The membrane-electrode assembly is the cathode/WE. Made with Nafion

membrane (sulfonated tetrafluoroethylene), gas diffusion layer, and Fe, O,
support on conductive carbon nanotube.
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Faraday Effciency (H,) (%)

Reaction Efficiency
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Faraday efficiency describes

the efficiency with which electrons are
transferred in a system facilitating an
electrochemical reaction.

Low efficiency may indicate poor
conversion or side reactions.

3 X Ryy,(mol - cm™ - s™1) x t(s) x S(em™2) x F

FEyy, (%) = 1(A) X t(s)

x 100%

2 X Py, (%) X Fy,(mL/min) X t(s) + 60(s/min) X F

FEp, (%) =

x 100%

I(A) x t(s) x Vp(L/mol) x 103(mL/L)
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Catalyst Surface Makes a Difference
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Conclusions

An 1mportant proof-of-concept of ammonia formation at room
temperature and atmospheric pressure.

Uses abundant reactants (water and nitrogen gas) and catalyst (iron
and carbon nanotubes).

Electricity introduces the possibility of renewable and green energy
sources.

Reaction rate, scale, and efficiency remain a challenge.
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